ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ТЮМЕНСКИЙ НАУЧНЫЙ ЦЕНТР СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

Принято Ученым советом ТюмНЦ СО РАН Протокол № \mathcal{C}

«<u>06</u>» <u>centerful</u> 20/9 г.

УТВЕРЖДАЮ Директор ТюмНЦ 💋 РАН

09» 09 20 19 r

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б.1.В/В.2 «Моделирование изменений геологической и географической среды»

Направление подготовки 05.06.01 Науки о Земле

Направленность (профиль) подготовки: 25.00.36 Геоэкология (по отраслям)

Уровень высшего образования: подготовка кадров высшей квалификации (аспирантура)

Присваиваемая квалификация: «Исследователь. Преподаватель-исследователь»

Форма обучения: очная, заочная

Настоящая рабочая программа дисциплины «Моделирование изменений геологической и географической среды» (код дисциплины Б.1.В/В2) входит в состав вариативных дисциплин Блока 1 «Дисциплины (модули)» основной образовательной программы по направлению подготовки научно-педагогических кадров в аспирантуре 05.06.01 Науки о Земле направленностей (профилей) 25.00.36 Геоэкология (по отраслям) и составлена на основании:

- Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 05.06.01 Науки о Земле (уровень подготовки кадров высшей квалификации)//Приказ Минобрнауки России от 30.07.2014 №870 с изменениями и дополнениями от 30 апреля 2015 года;
- Учебного плана подготовки аспирантов по направлению подготовки 05.06.01 Науки о Земле направленностей (профилей) 25.00.36 Геоэкология (по отраслям) и составлена на основании, утвержденного на заседании Ученого совета ТюмНЦ СО РАН от «22» декабря 2019г., протокол № 1.

В рабочей программе представлены цели и задачи дисциплины, методы преподавания и формы контроля, сформулированы требования к уровню ее освоения, дано краткое содержание разделов (тем), приведен список рекомендуемой основной и дополнительной литературы, предложены вопросы для текущего контроля, примерные тестовые задания для тестирования, темы докладов, тематика рефератов, перечень вопросов для промежуточного (итогового) контроля знаний (зачет).

Составители:

Аникин Г.В.

Рабочая программа дисциплины «Моделирование изменений геологической и географической среды» утверждена на заседании Ученого совета ТюмНЦ СО РАН от «06» сентября 2019г., протокол № 6.

Jamp

Зав.отделом аспирантуры

Устинова Е.В.

РАЗДЕЛ 1. СТРУКТУРА И СОДЕРЖАНИЕ РАОЧЕЙ ПРОГРАММЫ

1.1. Цель учебной дисциплины

Целью освоения дисциплины «Моделирование изменений геологической и географической среды» является -формировать основные представления о истории формирования и моделирования криогенных процессов, а также управления тепловым состоянием грунтов основания инженерных сооружений, основополагающих методических и теоретических принципов и представлений, базовых понятий и знаний в общих и прикладных аспектах этих направлений.

1.2. Учебные задачи дисциплины

Задачи дисциплины:

- 1) формирование научного мировоззрения и способность применять фундаментальные разделы естествознания для решения научно-исследовательских и научно-производственных задач;
- 2) способность применения на практике базовых профессиональных знаний теории и методов прогнозных расчетов;
- 3) освоение методов и инструментов обработки, анализа полевой и лабораторной геологической информации и построения прогноза, мониторинга изменений состояния геосистемы.

1.3. Место дисциплины в структуре ООП ВО

Дисциплина «Моделирование изменений геологической и географической среды»» входит в состав вариативных дисциплин Блока 1 «Дисциплины (модули)» основной образовательной программы подготовки аспиранта, код дисциплины Б.1.В/В2.

РАЗДЕЛ 2. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕУЗЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

В результате изучения дисциплины аспиранты должны:

иметь представление

- структуре и принципах построения моделей криогенных процессов;
- о видах и способах моделирования;
- о инструментах построения моделей;

знать

- методы анализа и синтеза, корреляции геологических данных;
- традиционные и перспективные направления в моделировании геосистем;
- способы создания моделей:

уметь

- выбирать средства математического моделирования;
- применять полученные знания при изучении специальных дисциплин;

владеть

- методами обоснованного выбора программных средств;
- иметь опыт разработки моделей систем в специализированных программных средствах.

Компетенции обучающегося, формируемые в результате освоения дисциплины и планируемые результаты обучения

Код и содержание компетенции	Перечень планируемых результатов			
	обучения			
УК-1 Способность к критическому анализу	ЗНАТЬ: методы критического анализа и			
и оценке современных научных	оценки современных научных достижений,			
достижений, генерированию новых идей	а также методы генерирования новых идей			
при решении исследовательских и	при решении исследовательских и			

практических числе практических задач, задач, TOM TOM числе R междисциплинарных областях междисциплинарных областях УМЕТЬ: анализировать альтернативные варианты решения исследовательских и практических задач оценивать потенциальные выигрыши/проигрыши реализации вариантов УМЕТЬ: при решении исследовательских и практических задач генерировать новые операционализации идеи, поддающиеся исходя ИЗ наличных ресурсов ограничений ВЛАДЕТЬ: навыками анализа методологических проблем, решении возникающих при исследовательских и практических задач, в том числе в междисциплинарных областях ВЛАДЕТЬ: навыками критического анализа и оценки современных научных достижений результатов деятельности по решению исследовательских и практических задач, в том числе в междисциплинарных областях ОПК-1: способность ЗНАТЬ: самостоятельно использования осуществлять научно-исследовательскую современные способы деятельность в области геотектоники и информационно-коммуникационных геодинамики использованием технологий В выбранной сфере современных методов исследования деятельности информационно-коммуникационных УМЕТЬ: выбирать и применять в профессиональной технологий деятельности экспериментальные расчетно-теоретические методы исследования ВЛАДЕТЬ: навыками поиска (в TOM числе использованием информационных систем и банных) критического баз И анализа информации ПО проводимых тематике исследований ВЛАДЕТЬ: навыками планирования научного исследования, анализа получаемых результатов и формулировки выводов ВЛАДЕТЬ: навыками представления и продвижения результатов интеллектуальной деятельности

ПК-2. Способность самостоятельно ставить конкретные задачи научных исследований в различных областях геоэкологии и решать их с помощью современной аппаратуры, оборудования, информационных технологий, с использованием новейшего ЗНАТЬ:

методы проектирования комплексных научноисследовательских и научно-производственных работ в геоэкологии

ЗНАТЬ:

современное состояние исследований в области

отечественного и зарубежного опыта.	геоэкологии, основные проблемы и
	перспективные направления развития в данной
	отрасли науки
	УМЕТЬ:
	формулировать актуальные научные проблемы
	в рамках области геоэкологиии, оценивать
	потенциальные выигрыши/проигрыши от
	реализации исследований в областях данных
	проблем
	ВЛАДЕТЬ:
	прикладными навыками эксплуатации
	современного лабораторного оборудования, а
	также программными пакетами для обработки
	данных в области научной деятельности

РАЗДЕЛ 3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины и виды учебной работы (в часах)

Общая трудоемкость дисциплины составляет 3 зачетных единицы (108 ч). Объем дисциплины, виды учебной работы аспирантов очной и заочной формы обучения на освоение дисциплины приведены в таблице 2.

Изучение дисциплины «Моделирование изменений геологической и географической среды»» по очной и заочной формам обучения проводится на 3 курсе обучения в 5 семестре.

Объем дисциплины и виды учебной работы (в часах)

Всего часов Виду учебной работы Очная форма Заочная форма Общая трудоемкость 108 108 дисциплины Аудиторные занятия (всего) 36 36 В том числе: Лекции 36 36 Практические занятия Самостоятельная работа 72 72 (всего) В том числе: Реферат Друге виды (др.) -Подготовка к экзамену Вид промежуточной зачет – 5 семестр зачет – 5 семестр (итоговой) аттестации

3.2. Содержание разделов учебной дисциплины.

Таблица 3

Таблица 2

Наименование раздела (темы) дисциплины	Содержание раздела дисциплины		
Тема 1	Цели и задачи дисциплины. Предмет, содержание, история		
	развития, основные направления использования		
	геокриологического прогноза и моделирования криогенных		
	процессов в природных и природно-технических геосистемах.		
Тема 2	Назначение и область практического использования. Состояние		
	изученности проблем в моделировании криогенных процессов.		
	Принципы и методы моделирования ландшафтов и криогенных		
	процессов.		
Тема 3	Статистические методы выявления взаимосвязей. Исследование		

	корреляционных связей. Функциональные связи. Построение
	управления регрессии. Прогноз по регрессии. Примеры.
Тема 4	Методы натурных моделей. Целевое назначение и актуальность.
	Экспериментальное натурное моделирование, районы и
	характеристика комплекса работ стационарных исследований.
	Синхронно-стадийный метод натурных исследований,
	диахронический подход, индикация по последствиям воздействия,
	сукцессионный подход, инверсия индикационных позиций, метод
	ландшафтно-генетических рядов. Область применения аналогово
	моделирования. Реализация регионального геокриологического
	прогноза на примере севера Западной Сибири.
Тема 5	Вопросы и перспективы расширения сфер моделирования состояния
	и динамики криогенных геосистем сплошного и прерывистого
	распространения ММП. Моделирование в целях оценки
	ландшафтных факторов формирования ИГУ. Изучение и оценка
	современного состояния ландшафтов как оценки основы
	прогнозирования
Тема 6	Моделирование и прогноз воздействия геотехнических систем
	газодобывающего комплекса криолитозоны на верхние горизонты
	ММП. Основные типы геотехнических систем. Методика
	формирования и проверки модели исходных данных.
Тема 7	Моделирование и прогноз теплового взаимодействия подсистем
	«сооружение -грунт» объектов гражданского строительства
Тема 8	Общая характеристика проблем строительства и эксплуатации
	сооружений на территории Западной Сибири. Использование
	криогенных ресурсов в строительстве.

3.3. Разделы (модули), темы дисциплины и виды занятий.

Таблина 4

					таолица 4
Наименование раздела	Аудиторные часы		Самостоятельная	Трудоём	
(темы) дисциплины	Лекции	Практи	Всего	работы (часы)	кость,
		ческие			ч/3Е
		занятия			
1	2	3	4	5	6
Тема 1	4		4	9	
Тема 2	4		4	9	
Тема 3	4		4	9	
Тема 4	4		4	9	
Тема 5	4		4	9	
Тема 6	4		4	9	
Тема 7	6		6	9	
Тема 8	6		6	9	
ИТОГО:	36		36	72	108/3

3.5. Самостоятельная работа аспирантов

Текущая самостоятельная работа (СРС) включает:

- работу с лекционным материалом, поиск и обзор литературы и электронных источников информации по темам;
- подготовка к практическим работам;
- выполнение реферативной работы, написание аннотации к научной статье;
- подготовка к контрольной работе, коллоквиуму, зачету.
- . *Творческая проблемно-ориентированная самостоятельная работа (TCP)*, направлена на повышение творческого потенциала аспирантов и ориентирована на развитие интеллектуальных умений, комплекса универсальных и профессиональных компетенций. TCP включает следующие виды самостоятельной работы:
- поиск и обзор опубликованной и фондовой литературы, электронных источников

информации по индивидуально заданной теме реферата;

- структурирование и презентация информации;

Содержание самостоятельной работы

- поиск, анализ, структурировании и презентации информации, анализе научных публикаций по определенной теме исследований,
- анализ статистических и фактических материалов по заданной теме, проведении расчетов, составлении схем и моделей на основе статистических материалов,
- выполнение расчетно-графических работ,

исследовательская работа и участие в научных конференциях, семинарах

РАЗДЕЛ 4. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Предусмотрены следующие виды контроля и аттестации обучающихся при освоении дисциплины:

- текущий контроль успеваемости;
- итоговая аттестация (зачет)

Текущий контроль осуществляется в виде устных и письменных опросов на занятиях. Итоговый контроль осуществляется в виде зачета.

Задания к контрольным мероприятиям (примерные тесты, вопросы и т.д.)

- 1. Основные направления развития, области применения геокриологического прогноза.
- 2. Перечислите основные методы прогнозирования криогенных процессов, достоинства и недостатки.
- 3. Постройте уравнение регрессии.
- 4. Корреляционная связь. Корреляционный анализ температурных показаний.
- 5. Аналоговое моделирование, области применения.
- 6. Программный комплекс «Тепло».

Критерии итоговой оценки результатов освоения дисциплины

критерии итоговой оценки результатов освоения дисциплины		
Оценка	Критерии	
1	2	
зачтено	ставится в случае, если аспирант покажет глубокое, исчерпывающее понимание сущности и взаимосвязи рассматриваемых процессов и явлений, продемонстрирует умения анализировать причинноследственные связи процессов с задачами его профессиональной квалификации.	
Не зачтено	ставится в случае, если имел место неправильный ответ хотя бы на один из основных вопросов, грубые ошибки в ответе, непонимание сущности излагаемых вопросов, неуверенные и неточные ответы на дополнительные вопросы.	

6. УЧЕБНО-МЕТОДИЧЕСКОЕ, ИНОФОРМАЦИОННОЕ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Рекомендуемая литература

Основная литература:

1. Ананьев Ю.С. Геоинформационные системы. Учеб. пособие. – Томск: Изд-во ТПУ, 2003.-70 с.

- 2. Ананьев Ю.С. Методические указания к выполнению лабораторных работ «Векторизация топо-графических и геологических карт». ТПУ. 2008.- 28с.
- 3. Ананьев Ю.С. Методические указания к выполнению лабораторных работ по дисциплинам «Геоинформационные системы» и «Компьютерные технологии в геологическом картирова-нии» с использованием геоинформационной системы ARCVIEW. ТПУ. 2006.- 47с.
- 4. Берлянт А.М. Геоиконика. М.: изд. Фирма «Астрея», 1996. 208 с.
- 5. ДеМерс М. Н. Географические информационные системы. Основы. Пер. с англ. М.: Дата+, 1999. 490 с.
- 6. Кошкарев А.В., Тикунов В.С. Геоинформатика. М.: Картгеоцентр– Геоиздат, 1993. 213 с.
- 7. Марков Н.Г. Базы данных: Учеб. пособие. Томск: Изд. ТПУ, 2001. 108 с.
- 8. Хомоненко А.Д., Цыганков В.М., Мальцев М.Г. Базы данных. СПб.: КОРОНА принт, 2002. 672 с.
- 9. Цветков В.Я. Геоинформационные системы и технологии. М.: Финансы и статистика, 1998. 288 с.
- 10. Поцелуев А.А., Архангельский В.В. Дистанционные методы исследования окружающей среды. Учебное пособие для вузов. Томск: STT, 2001, 184 с.
- 11. Требования по представлению в НРС и ГБЦГИ цифровых моделей листов Государственной геологической карты Российской Федерации масштаба 1:200000 второго издания. http://crg.spb.ru/.
- 12. Эталонная база изобразительных средств государственной геологической карты 200000. http://crg.spb.ru/.. 212c.

Дополнительная литература

- 1. Лурье И.К. Геоинформатика. Учебные геоинформационные системы: Учебно-метод. пособие. М.: изд-во Моск. ун-та, 1997. 114 с.
- 2. Шайтура С.В. Геоинформационные системы и методы их создания.- Калуга: изд-во Н.Бочкаревой, 1998. 252 с.
- 3. А.М. Берлянт Геоэконика. М.: Астея, 1996. 207 с.

6.2. Материально-техническое и программное обеспечение дисциплины (разделов)

Лекции проводятся в аудиториях, приспособленных для демонстрации мультимедийных презентаций.

Программное обеспечение Microsoft Windows (акт приема передачи № APC9019391 от 21.12.2009 бессрочная)

ABBYY FineReader 9.0 Corporate Edition пакет Concurrent лицензий AF90-3U1P05-102 Adobe Photoshop CS4 11.0 WIN AOO License RU, Design Premium CS4 4.0 WIN AOO License RU- №7080466 от 18.12.2009)

CorelDRAW Graphics Suite X4 License ML (1-10) №4063067 or 20.01.2010

Kaspersky Endpoint Security для бизнеса - Стандартный Russian Edition/ 100-149 Node 1 year Renewal License №1B08-191202-081334-380-1557 от 02.12.2019 до 03.01.2021