ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ТЮМЕНСКИЙ НАУЧНЫЙ ЦЕНТР СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

Принято Ученым советом ТюмНЦ СО РАН Протокол № \mathcal{C}

«<u>06</u>» <u>сенбебре</u> 20<u>19</u> г.

УТВЕРЖДАЮ Директор ТюмНЦ СО РАН А.Н.Багашев

<u>Од»</u> <u>ОД</u> 20<u>19</u>г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б.1.В/В.3 «Региональная геофизика»

Направление подготовки 05.06.01 Науки о Земле

Направленность (профиль) подготовки: 25.00.10 Геофизика, геофизические методы поисков полезных ископаемых

Уровень высшего образования: подготовка кадров высшей квалификации (аспирантура)

Присваиваемая квалификация: «Исследователь. Преподаватель-исследователь»

Форма обучения: очная, заочная

Настоящая рабочая программа дисциплины «Региональная геофизика» (код дисциплины Б.1.В/В3) входит в состав вариативных дисциплин Блока 1 «Дисциплины (модули)» основной образовательной программы по направлению подготовки научно-педагогических кадров в аспирантуре 05.06.01 Науки о Земле направленностей (профилей) 25.00.10 Геофизика, геофизические методы поисков полезных ископаемых; и составлена на основании:

- Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 05.06.01 Науки о Земле (уровень подготовки кадров высшей квалификации)//Приказ Минобрнауки России от 30.07.2014 №870 с изменениями и дополнениями от 30 апреля 2015 года;
- Учебного плана подготовки аспирантов по направлению подготовки 05.06.01
 Науки о Земле направленностей (профилей) 25.00.36 Геоэкология (по отраслям) и составлена на основании, утвержденного на заседании Ученого совета ТюмНЦ СО РАН от «22» декабря 2019г., протокол № 1.

В рабочей программе представлены цели и задачи дисциплины, методы преподавания и формы контроля, сформулированы требования к уровню ее освоения, дано краткое содержание разделов (тем), приведен список рекомендуемой основной и дополнительной литературы, предложены вопросы для текущего контроля, примерные тестовые задания для тестирования, темы докладов, тематика рефератов, перечень вопросов для промежуточного (итогового) контроля знаний (зачет).

Составители:

Садуртдинов М.Р.

Рабочая программа дисциплины «Региональная геофизика» утверждена на заседании Ученого совета ТюмНЦ СО РАН от «06» сентября 2019г., протокол № 6.

Joneph

Зав.отделом аспирантуры

Устинова Е.В.

РАЗДЕЛ 1. СТРУКТУРА И СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

1.1. Цель учебной дисциплины

Целью освоения дисциплины «Региональная геофизика» знания основ теории полевых геофизических методов, методика полевых работ, основные приемы обработки и интерпретации полученных геофизических материалов при поисках и разведке нефтяных и газовых месторождений. Региональный компонент: Основы прогнозирования нефтегазоносности по геофизическим данным.

1.2. Место дисциплины в структуре ООП ВО

Дисциплина «Региональная геофизика»» входит в состав вариативных дисциплин Блока 1 «Дисциплины (модули)» основной образовательной программы подготовки аспиранта, код дисциплины Б.1.В/В3.

Требования к первоначальному уровню подготовки обучающихся для успешного освоения дисциплины:

- базовые знания по теории геофизических полей;
- базовые навыки по интерпретации геофизических полей в скважинах.

РАЗДЕЛ 2. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕУЗЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

В результате изучения дисциплины аспирант должен: Знать: физико-геологические основы методов полевой геофизики; основные физические параметры геофизических полей и физические характеристики (свойства) горных пород; современные представления о геологической природе геофизических аномалий; основные положения методики геофизических работ, применяемых при поисках нефтегазовых месторождений: основные приемы обработки И интерпретации геофизических прогнозирования нефтегазоносности материалов; основы геофизическим данным.;

Уметь: сформулировать задачи геофизических методов исследований и обосновать их постановку в конкретных геолого-геофизических условиях; задокументировать и оформить результаты первичных геофизических наблюдений; правильно выбрать подходы к интерпретации результатов геофизических наблюдений; осуществить процедуры интерпретации; определить данным наблюдений определенные ПО характеристики геофизических полей изучаемых объектов; по геофизическим данным осуществить прогноз нефтегазоносности изучаемого ДЛЯ Владеть: необходимой геологической, петрофизической и геофизической информацией для постановки геологических задач с применением методов геофизики, способами физических оценок по порядку величины, методами компьютерной обработки данных геофизических измерений с оценкой их точности в зависимости от региона

Компетенции обучающегося, формируемые в результате освоения дисциплины и планируемые результаты обучения

Код и содержание компетенции	Перечень планируемых результатов	
	обучения	
УК-1 Способность к критическому анализу	ЗНАТЬ: методы критического анализа и	
и оценке современных научных	оценки современных научных достижений,	
достижений, генерированию новых идей	а также методы генерирования новых идей	
при решении исследовательских и	при решении исследовательских и	
практических задач, в том числе в	практических задач, в том числе в	
междисциплинарных областях	междисциплинарных областях	
	УМЕТЬ:	
	анализировать альтернативные варианты	

решения исследовательских и практических задач и оценивать потенциальные выигрыши/проигрыши реализации этих вариантов

УМЕТЬ: при решении исследовательских и практических задач генерировать новые идеи, поддающиеся операционализации исходя из наличных ресурсов и ограничений

ВЛАДЕТЬ: навыками анализа методологических проблем,

возникающих при решении

исследовательских и практических задач, в том числе в междисциплинарных областях ВЛАДЕТЬ:

навыками критического анализа и оценки современных научных достижений и результатов деятельности по решению исследовательских и практических задач, в том числе в междисциплинарных областях

ПК-1. Готовность применять перспективные методы исследования и решения профессиональных задач геофизики с учетом мировых тенденций в соответствии с направленностью, организовывать работу исследовательского коллектива в этой области деятельности

ЗНАТЬ:

методы исследования и решения профессиональных задач в геофизики с учетом мировых тенденций развития методов и средств в геофизики; приемы организации работы исследовательского коллектива в этой области.

УМЕТЬ:

применять методы исследования и решения профессиональных задач с учетом мировых тенденций развития методов и средств геофизики, ставить задачи и разрабатывать программу исследования, исходя из мировых тенденций развития методов и средств геофизики; организовывать работы исследовательского коллектива в этой области.

ВЛАДЕТЬ:

перспективными методами исследования и решения профессиональны х задач с учетом мировых тенденций развития методов и средств геофизики, приемами И технологиями оценки результатов деятельности ПО решению профессиональных задач, приемами организации работы исследовательского коллектива в этой области.

ПК-2. Способность самостоятельно ставить конкретные задачи научных исследований в различных областях геофизики и решать их с помощью современной аппаратуры, оборудования, информационных технологий, с использованием новейшего отечественного и зарубежного опыта.

ЗНАТЬ:

методы проектирования комплексных научно-исследовательских и научно-производственных работ

ЗНАТЬ:

современное состояние исследований в области геофизики основные проблемы и

перспективные направления развития в
данной отрасли науки
УМЕТЬ:
формулировать актуальные научные
проблемы в рамках области геофизики,
оценивать потенциальные
выигрыши/проигрыши от реализации
исследований в областях данных проблем
УМЕТЬ
применять на практике методы сбора,
обработки, анализа и обобщения фондовых
данных по геофизики
ВЛАДЕТЬ:
прикладными навыками эксплуатации
современного лабораторного оборудования,
а также программными пакетами для
обработки данных в области научной
деятельности

РАЗДЕЛ 3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины и виды учебной работы (в часах)

Общая трудоемкость дисциплины составляет 2 зачетных единицы (72 часа). Объем дисциплины, виды учебной работы аспирантов очной и заочной формы обучения на освоение дисциплины приведены в таблице 2.

Изучение дисциплины «Региональная геофизика» по очной и заочной формам обучения проводится на 2 курсе обучения в 3 семестре.

Таблица 2 Объем лисшиплины и вилы учебной работы (в часах)

Объем дисциплины и виды учеоной работы (в часах)				
Вид учебной работы	Всего часов			
	Очная форма	Заочная форма		
Общая трудоемкость	72	72		
дисциплины				
Аудиторные занятия (всего)	32	32		
В том числе:				
Лекции	32	32		
Практические занятия	-	-		
Самостоятельная работа	40	40		
(всего)				
В том числе:				
Реферат	-	-		
Друге виды (др.)	-	-		
Подготовка к экзамену				
Вид промежуточной	зачет – 3 семестр	зачет – 3 семестр		
(итоговой) аттестации				

3.2. Содержание разделов учебной дисциплины.

Таблица 3

Наименование раздела (темы) дисциплины	Содержание раздела дисциплины		
Тема 1. Методология региональной геофизики	Задачи региональной геофизики: фундаментальные и прикладные, геодинамические		
T T	и прогнозные. Региональная геофизики и геодинамика:		

	геодинамические задачи и модели,
	некорректность геодинамических задач, требования к данным
	региональной геофизики.
Тема 2. Региональные	Определяющие факторы физических свойств пород: атомная
закономерности	структура, кристаллическая структура, макроструктура горных пород,
физических свойств	давление и температура, в том числе в пределах криосферы;
горных пород	корреляция физических свойств горных пород; Плотностная и
	скоростная модели коры и мантии Земли.
Тема 3. Методы	Структурная сейсмология и ГСЗ: методы структурной сейсмологии,
региональной геофизики	глубинные
	сейсмические зондирования. Электромагнитные зондирования.
	Региональная гравиметрия: методы изучения изостазии литосферы,
	изучение структурно-тепловой неоднородности переходной зоны
	мантии. Геотермия. Палеомагнитология: методы палеомагнитных
	исследований, некоторые результаты палеомагнитологии.
Тема4.	Принципы комплексирования, уровни комплексирования и подходы к
Комплексирование	интерпретации, рациональный комплекс геофизических методов.
геофизических методов	Комплексная интерпретация данных ГСЗ и гравиметрии: строение
	земной коры и верхней мантии, плотностная неоднородность верхней
	мантии. Комплексная интерпретация гравитационных и магнитных
	динамики литосферы.
Тема 5. Геофизические	Литосфера и астеносфера континентов и океанов. Очаги
данные в обоснование	землетрясений и их механизмы. Магнитное поле океанов и гипотеза
тектоники плит	Вейна – Метьюза. Большие перемещения плит
	по палеомагнитным данным. Механизмы движения плит по
	геофизическим данным.
Тема 6. Структура	Сферическая физическая модель Земли: исходные материалы, модель
верхней мантии	PREM, фазовая переходная зона мантии, слой D" в основании нижней
	мантии. Модели мантии по данным сейсмической томографии.
Тема 7. Температура в	Температура в литосфере, адиабатическая температура в мантии,
недрах Земли	температура плавления в мантии
_	
Тема 8. Мантийные	Реология мантии. Конвекция в верхней мантии. Нижнемантийные
геодинамические	термохимические
процессы	плюмы и их воздействие на динамику верхней мантии. Механизмы
	формирования структур литосферы
Тема 9. Литосфера	Строение земной коры Сибири. Плотностная и скоростная
Сибири по данным	неоднородность верхней мантии. Структура и динамика Байкальского
региональной геофизики	рифта. Строение криосферы и физические свойства пород в ее
	пределах.
	I - X - 12

3.4. Разделы (модули), темы дисциплины и виды занятий.

Таблица 4

Наименование раздела (темы) дисциплины	Аудиторные часы Лекции Практи Всего		Самостоятельная работы (часы)	Трудоём кость,	
	,	ческие занятия		•	ч/3Е
1	2	3	4	5	6
Тема 1. Методология региональной геофизики	2		3	2	
Тема 2. Региональные закономерности физических свойств горных пород	3		3	4	
Тема 3. Методы региональной геофизики	3		3	4	

Тема4. Комплексирование геофизических методов	3	3	4	
Тема 5. Геофизические данные в обоснование тектоники плит	4	4	4	
Тема 6. Структура верхней мантии	3	3	4	
Тема 7. Температура в недрах Земли	4	4	4	
Тема 8. Мантийные геодинамические процессы	4	4	4	
Тема 9. Литосфера Сибири по данным региональной геофизики	6	6	4	
ИТОГО:	32	32	40	72/2

3.5. Самостоятельная работа аспирантов

Текущая самостоятельная работа (СРС) включает:

- работу с лекционным материалом, поиск и обзор литературы и электронных источников информации по темам;
- подготовка к практическим работам;
- выполнение реферативной работы, написание аннотации к научной статье;
- подготовка к контрольной работе, коллоквиуму, зачету, экзамену.

Творческая проблемно-ориентированная самостоятельная работа (TCP), направлена на повышение творческого потенциала аспирантов и ориентирована на развитие интеллектуальных умений, комплекса универсальных и профессиональных компетенций. TCP включает следующие виды самостоятельной работы:

- поиск и обзор опубликованной и фондовой литературы, электронных источников информации по индивидуально заданной теме реферата;
- структурирование и презентация информации;
- поиск и анализ научных публикаций по теме «Региональная геофизика».

Содержание самостоятельной работы по модулю «Региональная геофизика»

- поиск, анализ, структурировании и презентации информации, анализе научных публикаций по определенной теме исследований,
- анализ статистических и фактических материалов по заданной теме, проведении расчетов, составлении схем и моделей на основе статистических материалов,
- выполнение расчетно-графических работ,
- исследовательская работа и участие в научных студенческих конференциях, семинарах

РАЗДЕЛ 4. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Предусмотрены следующие виды контроля и аттестации обучающихся при освоении дисциплины:

- текущий контроль успеваемости;
- итоговая аттестация (зачет)

Текущий контроль осуществляется в виде устных и письменных опросов на занятиях. Итоговый контроль осуществляется в виде зачета.

Рекомендуемый перечень тем для написания реферата

- 1. Магниторазведка при поисках магнетитовых руд.
- 2. Геофизические методы, используемые при поисках хромитовых месторождений.
- 3. Гравиразведка при поисках титаномагнетитовых месторождений.

- 4. Сейсморазведочные работы при изучении внутренней структуры рудных полей.
- 5. Сейсморазведочные работы при поисках и разведке месторождений нефти и газа.
- 6. Основные методы инженерно-геологической геофизики.

На самостоятельное изучение выносятся следующие темы.

- 1. Методы региональной глубинной и структурной геофизики.
- 2. Строение Земли по геофизическим данным.
- 3. Геофизические методы изучения геологической среды.

Критерии итоговой оценки результатов освоения дисциплины

Оценка	Критерии
1	2
зачтено	ставится в случае, если аспирант покажет
	глубокое, исчерпывающее понимание
	сущности и взаимосвязи рассматриваемых
	процессов и явлений, продемонстрирует
	умения анализировать причинно-
	следственные связи процессов с задачами
	его профессиональной квалификации.
Не зачтено	ставится в случае, если имел место
	неправильный ответ хотя бы на один из
	основных вопросов, грубые ошибки в
	ответе, непонимание сущности излагаемых
	вопросов, неуверенные и неточные ответы
	на дополнительные вопросы.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ, ИНОФОРМАЦИОННОЕ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Рекомендуемая литература

Основная литература:

- 1.Паклин Н.Б. Использование обучающихся алгоритмов для интерпретации данных ГИС/ Н.Б.Паклин, Р.С.Мухамадиев //Бурение и нефть. -2005. -№5.
- 2. Учебно-методическая литература по обрабатывающим программам. Руководство пользователя. -2008-2010.
- 3. Золоева Г.М. Комплексная интерпретация геофизических данных с целью оценки параметров коллекторов: учебное пособие /Г.М.Золоева, Н.Е. Лазуткина. М.: Макс-Пресс, 2009.-148c.
- 4. Методические рекомендации по подсчету геологических запасов нефти и газа объемным методом /под. ред. В.И. Петерсильева, В.И. Пороскуна, Г.Г. Яценко. –Москва Тверь: ВНИГНИ, НПЦ Тверь геофизика, 2003.
- 5. Орлинский Б.М. Контроль за обводнением продуктивных пластов методами промысловой геофизики / Б.М. Орлинский, В.М.Арбузов. М.: Недра, 1971. -153с.
- 6. Воскресенский, Ю.Н. Полевая геофизика / Ю.Н.Воскресенский М.: Недра, 2010. 488c.
- 7. Геофизические исследования и работы в скважинах: в 7 т. Уфа: Информреклама, 2010. 240с.
- 8. Геофизические исследования скважин: справочник мастера по промысловой геофизике / под общей редакцией В.Г. Мартынова, Н.Е. Лазуткиной, М.С. Хохловой. М.: Инфра-Инженерия, 2009.-960c.

Дополнительная литература

- 1. Вендельштейн, Б.Ю. Геофизические методы определения параметров нефтегазовых коллекторов / Б.Ю. Вендельштейн, Р.А. Резванов. М.: Недра, 1978. 318с.
- 2. Валиуллин, Р.А. Термогидродинамические исследования при различных

режимах (руководство по исследованию и интерпретации) / Р.А. Валиуллин, А.Ш. Рамазанов и др. Уфа, 2002. – 248 с.

- 3. Гудок, Н.С. Определение физических свойств нефтеводосодержащих пород: учебное пособие для вузов / Н.С. Гудок, Н.Н. Богданович, В.Г. Мартынов. М.: ООО «Недра-Бизнесцентр», 2007. 502с.
- 4. Дахнов, В.Н. Геофизические методы определения коллекторских свойств и нефтегазонасыщения горных пород / В.Н. Дахнов. 2-е изд., перераб. и доп. М.: Недра, 1985. 311с.
- 5. Дворкин, В.И. Геофизический мониторинг разработки нефтяных пластов, обсаженных стеклопластиковыми трубами / В.И. Дворкин. Уфа: ГУП «Уфимский полтграфкомбинат», 2001.
- 6. Дьяконов, Д.И. Общий курс геофизических исследований скважин / Д.И. Дьяконов, Е.И. Леонтьев, Г.С. Кузнецов. М.: Недра, 1984. 432c.
- 7. Косарев, В.Е. Контроль за разработкой нефтяных и газовых месторождений: пособие для самостоятельного изучения для слушателей курсов повышения квалификации специальности «Геофизика» / В.Е. Косарев. Казань: Казанский государственный университет, 2009. 145с.
- 8. Кузнецов, Г.С. Контроль за разработкой нефтяных месторождений: учеб. для вузов / Г.С. Кузнецов, Е.И. Леонтьев. М.: Недра, 1991. 223с.
- 9. Методические рекомендации по определению подсчетных параметров залежей нефти и газа по материалам геофизических исследований скважин с привлечением результатов анализов керна, опробований и испытаний продуктивных пластов / под. ред. Б.Ю. Вендельштейна, В.Ф. Козяра, Г.Г. Яценко. Калинин: НПО «Союзпромгеофизика», 1990. 261с.
- 10. Орлинский Б.М. Контроль за разработкой залежей нефти геофизическими методами / Б.М. Орлинский. М.: Недра, 1977. 239с.

6.2. Материально-техническое и программное обеспечение дисциплины (разделов)

Лекции проводятся в аудиториях, приспособленных для демонстрации мультимедийных презентаций.

Используется программное обеспечение Microsoft Windows (акт приема передачи № APC9019391 от 21.12.2009 бессрочная)

ABBYY FineReader 9.0 Corporate Edition пакет Concurrent лицензий AF90-3U1P05-102 Adobe Photoshop CS4 11.0 WIN AOO License RU, Design Premium CS4 4.0 WIN AOO License RU- №7080466 от 18.12.2009)

CorelDRAW Graphics Suite X4 License ML (1-10) №4063067 от 20.01.2010 Kaspersky Endpoint Security для бизнеса - Стандартный Russian Edition/ 100-149 Node 1 year Renewal License №1B08-191202-081334-380-1557 от 02.12.2019 до 03.01.2021